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Reflecting internal gravity waves in a stratified fluid preserve their frequency and
thus their angle with the gravitational direction. At boundaries that are neither
horizontal nor vertical, this leads to a focusing or defocusing of the waves. Previous
theoretical and experimental work has demonstrated how this can lead to internal
wave energy being focused onto ‘wave attractors’ in relatively simple geometries. We
present new experimental and theoretical results on the dynamics of wave attractors
in a nearly two-dimensional trapezoidal basin. In particular, we demonstrate how
a basin-scale mode forced by simple mechanical excitation develops an equilibrium
spectrum. We find a balance between focusing of the basin-scale internal wave by
reflection from a single sloping boundary and viscous dissipation of the waves with
higher wavenumbers. Theoretical predictions using a simple ray-tracing technique are
found to agree well with direct experimental observations of the waves. With this we
explain the observed behaviour of the wave attractor during the initial development,
steady forcing, and the surprising increase of wavenumber during the decay of the
wave field after the forcing is terminated.

1. Introduction
Understanding the behaviour of linear internal waves in bounded geometries has

relevance to oceanography, astrophysics and fluid dynamics in general. The dispersion
relation describing the internal waves, ω = N cos θ , relates the frequency ω of the
internal waves to the buoyancy frequency N . The wave energy propagates with angle
θ with the vertical, with the vertical opposite to the gravitational direction. However,
unlike the more familiar surface waves, the dispersion relation does not restrict the
wave vector k = k(cos θ, sin θ) other than being perpendicular to the group velocity
(Phillips 1977; LeBlond & Mysak 1978; Maas 2005). The dispersion relation predicts
that reflection of the internal waves at boundaries that are neither horizontal nor
vertical, leads to a focusing or defocusing of the waves. Maas & Lam (1995) showed
that in almost all confined fluid domains wave energy focusing dominates defocusing,
leading to a so-called wave attractor. The experimental confirmation of such an
attractor in a trapezoidal domain was presented in Maas et al. (1997) and re-analysed
by Lam & Maas (2008). In this experiment a nearly two-dimensional container, filled
with a linearly stratified fluid, was vertically oscillated. Displacement of dye lines was
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used to visualize the internal dynamics. Starting from a rest position, an attractor
grew due to subharmonic parametric instability. This instability is a linear mechanism
that leads to the growth of a perturbation with half the forcing frequency as a
result of the modulation of the gravitational acceleration (Benielli & Sommeria 1998).
Lam & Maas (2008) revealed that the amplitude of the isopycnal displacements on
the attractor had an exponential growth before reaching saturation. Contrary to the
growth of a regular mode, the saturation time varied from position to position. They
also proposed a causal connection between forcing of a surface seiche and the internal
wave field.

Wave attractors are also found for the analogous class of inertial waves supported by
homogeneous rotating fluids (Stewartson 1971; Maas 2005). Experimentally, inertial
wave attractors have been observed and studied by Maas (2001) and Manders &
Maas (2003). They considered a rotating rectangular tank with a sloping wall. From
the comparison between the small tank of Maas (2001) and the larger tanks of
Manders & Maas (2003), it appears that the width of the attractor branches is
independent of viscosity. This led Manders & Maas (2004) to the conclusion that the
spatial scale of the observed attractors is set by nonlinear processes. However, in the
theoretical work by Rieutord, Valdettaro & Georgeot (2001, 2002) viscous processes
were assumed to set the scale. Also, Ogilvie (2005) considered the low-viscosity limit
and provided a way of calculating the dissipation rate. In these models the dissipative
spreading of the waves balances the geometric focusing due to reflections.

The purpose of this paper is to contribute to the above discussion of what sets the
attractor scale. In this context, we define the scale of the attractor as the dominant
wavelength, perpendicular to the attractor branches, corresponding to the peak in the
wavenumber spectrum (to be discussed later). We have conducted experiments and
present the observed data mainly as spectra of the wavenumber k. We show that a
balance exists between amplification by focusing at the sloping wall and dissipation
at the highest wavenumbers.

2. Method
For the experiment we use a narrow rectangular tank with one sloping endwall

at an angle of 27◦ to the vertical (see figure 1). Although the tank has finite width,
we refer to it as nearly two-dimensional. This is because the symmetry is broken by
the slope so the wave motion will primarily depend on the along-tank and vertical
coordinates, x and z respectively, and will be essentially uniform in the narrow, cross-
tank (y) direction. (See table 1 for the dimensions of the tank.) The tank is filled
with a stratification comprising a layer of depth H = 190 ± 2 mm, in which the density
decreases linearly upwards, beneath a shallow mixed surface layer. The presence of this
mixed layer does not affect the dynamics of the stratified layer and so we shall exclude
it from our discussion. Filling the tank with the well-known double-bucket technique
is not possible as the domain has a cross-section that varies with height. Instead,
we use two computer-controlled Masterflex peristaltic pumps that enable us to fill the
tank with any desired stratification. We present the findings of experiments performed
in a fluid with constant buoyancy frequency N =

√
−g/ρ0 dρ̄(z)/dz = 3 ± 0.1 rad s−1,

where ρ0 is a reference density. Here, we measure the background stratification ρ̄(z)
by taking 10 density samples. Although our choice of N pushes the limit of the
Boussinesq approximation, using smaller values of N is found to make no difference
other than that it affects the quality of the visualization.
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Forcing period T 5.1 s
Buoyancy frequency N 3 rad s−1

Fluid height H 190 mm
Dimensions of tank h × w × Lbot 330 × 101 × 453 mm
Angle of sloping wall α 0.47 rad
Forcing frequency ωe 2π/T = 1.23 rad s−1

Forcing amplitude Ae 120 mm
Duration forced stage 50 × T = 255 s
Duration decay stage 40 × T = 204 s

Table 1. Parameter values of the experiment, described in § 2.

To measure the motions in the fluid non-intrusively, we use the synthetic schlieren
technique (Dalziel, Hughes & Sutherland 2000). Synthetic schlieren measures the
refractive index changes of a medium resulting from density perturbations. The
principle is as follows. When a light-ray propagates through the fluid, the direction
of propagation of this ray will be altered by the local value of the gradient of the
index of refraction. A random dot pattern on a light bank 0.5 m behind the tank and
fixed in the laboratory frame is monitored through the fluid. Density perturbations
alter the refractive index and hence the direction of the light and are observed as
apparent movement of the dots. Unfortunately, the refractive index of the air, between
the tank and the point of observation, is also altered by unavoidable temperature
fluctuations in the laboratory. This leads to some ‘thermal noise’ contaminating the
observations. To record the apparent movements of the dots, we use a Jai CV-
M4+CL camera (1.3 MPixel monochrome) positioned 8 m from the tank. Using an
unperturbed reference image, the perturbed position of the dots is translated into
corresponding density gradient variations. For this comparison and data processing
we use the DigiFlow software. As we observe the changes in the density gradient
field, the stronger the undisturbed gradient field is, the more the dots appear to
move. Consequently we present results of experiments with large N . We will present
the observations as components of b = (bx, bz) ≡ ∇ρ ′/(dρ̄/dz), i.e. the perturbation
density gradient relative to the gradient of the unperturbed background stratification,
(dρ̄/dz).

Initially, we focused on internal wave generation by subharmonic parametric
instability. This sort of forcing resulted in the attractor reported by Maas et al.
(1997) and Lam & Maas (2008). To excite the instability, we use a vertically
oscillating platform that carries the tank. However, with forcing amplitude Ae well
below the theoretically predicted threshold of the parametric instability, another
generation mechanism is already very effective. Owing to slight horizontal movements
accompanying the much stronger vertical motion, the stratified fluid in the tank starts
sloshing a little, with an estimated amplitude of 0.5 mm. This barotropic motion is
strong enough to generate baroclinic internal waves from its interaction with the
slope. (Installing a rigid lid on the surface prevented this sloshing and effectively
removed any measurable internal wave generation.) The generated internal waves
have a frequency ω equal to that of the excitation, i.e. ω = ωe. The results presented
in this paper are for internal waves that are generated by this barotropic motion of
the fluid.

The experiment is performed as follows. After 1 period, T = 2π/ωe, of linearly
increasing the amplitude to Ae, the platform is vertically oscillated with frequency ωe

for 49T . During this stage the camera is triggered to capture images at three fixed
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Figure 1. Harmonic analysis of the observations of bx (left) and bz (right). (a, b) The
amplitude. The black arrow in (a) gives the direction of the group velocity cg pointing in the
direction of energy propagation. The white lines indicate sections S1–S4, perpendicular to the
corresponding four branches of the attractor. The phase is shown in (c, d). Slope angle α and
propagation angle θ are indicated in (c).

positions at each cycle of the oscillation. At t = 50T the motion of the platform is
linearly damped over two periods. Directly after the platform is at rest, from t = 52T

on, the camera captures 24 frames s−1 (fps) of the decay stage, over 40 periods.

3. Results
We observe an internal wave attractor with the parameters given in table 1. We

present the result of harmonic analysis at frequency ω = ωe of bx and bz using the
very accurate time series (24 fps) between t = 52T and t = 54T . The sloshing of the
free surface does not show up in harmonic analysis. The amplitudes are shown in
figure 1(a, b); the figures have been cropped to the boundaries of the tank and to the
bottom of the mixed surface layer. The orthogonal sections over the four attractor
branches, represented by the white dashed lines in figure 1(a), are for later use and
will be referred to as S1–S4. The corresponding phases of the internal wave fields are
shown in figure 1(c, d). The angles of the sloping wall, α, and of the internal waves, θ ,
are indicated in figure 1(c). Note that the phase of bx is inverted upon each reflection,
while that of bz is maintained.

The spatial structure of the perturbation and phase take the form of an internal
wave attractor, as originally observed by Maas et al. (1997). The sloping wall focuses
waves propagating in a clockwise sense. The phase propagation is perpendicular to the
attractor branches, indicating that the group velocity, and thus the energy, propagates
clockwise, as indicated by the black arrow. Following the energy from the sloping
wall along the attractor, it is clear that the intensity of the density perturbation
decreases, reaching a minimum just before the sloping wall. Also, the intensification
at the reflection points is observed, being the result of (linear) superposition of the
incident and reflected branches.

After starting the oscillating platform, the attractor grows from the initial
undisturbed state. The growth of bz in the middle of S1 is shown in figure 2. There
is clearly an initial growth stage reaching an equilibrium after t = 25T . Throughout
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Figure 2. Observed growth and decay of bz in the middle of S1. Note that the observation in
the forced stage is once per period while the decay is shown in much more detail (125 obs/T ).
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Figure 3. Four snapshots of bz, at (a) t = 52T (beginning of decay stage), (b) t = 60T , (c)
t = 68T and (d) t = 76T , showing that the shorter wavelengths decay later.

the decay stage (t > 52T ) the frequency of the attractor remains well preserved with
ω =ωe ± 0.05 rad s−1. The dispersion relation therefore ensures that θ is preserved,
as can be seen in figure 3 where four snapshots of the decay stage are presented.
Rather surprisingly, these snapshots suggest that the wavelength of the attractor
decreases. This seem contrary to the notion that diffusive processes eliminate the
short wavelengths. The snapshots confirm that the magnitude of the perturbation
decays everywhere in the tank, similar to the observation in figure 2.

3.1. Spectral analysis

The remarkable presence of several wavelengths during the decay suggests that there
is value in analysing the wavenumber spectrum. We introduce a coordinate system
that aligns with the branches and the wave vector k = k(cos θ, sin θ) in the (x, z)-plane.
In particular, η is the coordinate along section S1, increasing from top left to bottom
right, and is given by η = x cos θ − z sin θ . The buoyancy gradient in the direction of
η is bη = bx cos θ − bz sin θ , and we assume that this can be written as

bη =

∫
A(k)ei(kη−ωt) dk. (3.1)
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Figure 4. (a) Viscous broadening from S1 to S4 at t =52T . (b) Time evolution of the
spectrum along S1 at t = 52T , 60T , 68T and 70T .

Note that η is redefined along S2–S4. Ideally, the complex amplitudes A(k) are
obtained by Fourier transform of bη, where the amplitude fields of harmonic analysis
are used to construct bη (fields such as in figure 1). However, harmonic analysis is
only possible in the decay stage as the few observations in the forced stage, i.e. three
per cycle, prove to be insufficient to adequately reproduce the amplitudes. Instead,
for t < 50T , we must approximate A(k) using a Fourier transform of the bη field from
the instantaneous gradient fields. Examining this approximation for t � 52T shows
that it reproduces the main qualitative features of the full spectrum. As is standard
when performing Fourier analysis on non-periodic signals, we add to every section a
sequence of zeros, so-called zero-padding. This allows us to plot nearly continuous
spectral lines (and contour plots) in figures 4–6.

The spectra of S1–S4 from harmonic analysis, over the first period of the decay, are
presented in figure 4(a). Comparing the spectra, we see a clear shift of the spectral
peak towards low wavenumbers as we move from S1 to S4. This can also be seen in
figure 3(a), at t = 52T , with a broadening of the branches on going from S1 and S4.
From the spectra we learn that, on following their path around the attractor, the high
wavenumbers disappear and the low wavenumbers remain. This viscous broadening
of the attractor branches corresponds to the decrease in dominant wavenumber.

However, as the attractor decays we observe that the low wavenumbers (large
wavelengths) disappear. The spectra for S1 from harmonic analysis around the same
moments during the decay as in figure 3 are shown in figure 4(b). Apart from a
decrease of total amplitude, we indeed see a clear shift of the peak towards the high
wavenumbers

Approximate spectra for S1 from instantaneous fields during growth, equilibrium
and decay stages are combined in figure 5. It shows in false colour the ‘energy’ |A(k)|2
(i.e. the square of the spectral amplitude of the buoyancy gradient) as a function of
wavenumber (horizontal axis) and time (vertical axis). At the start of the experiment,
t = 0, there are no waves. The spectrum grows from the lowest wavenumbers towards
the high wavenumbers. Thermal fluctuations in the laboratory contaminate the
spectra, most notably at t = 22T and t = 42T . By t = 25T the spectrum reaches
equilibrium, coinciding with the saturation of the amplitude of the density gradient
perturbation in figure 2. After the oscillation of the platform is stopped, t > 52T ,
we observe the decay of the spectrum. It is clear that, as time passes, the energy
at low k values decays fastest, while that at high wavenumbers persists. This is in
accordance with the qualitative observation of the structure in figure 3. Note that



Wavenumber spectrum and evolution of an internal wave attractor 379

high-wavenumber energy exists from the time the spectrum reaches equilibrium
onwards. However, the energy at high wavenumbers is overshadowed by that of
the stronger low wavenumbers until the forcing is halted. Only when the high
wavenumbers become dominant do they determine the scale of the attractor branch.

4. Simple model
In this section we present a model explaining the observed characteristics of the

wavenumber spectrum in the growth and decay stage. Subsequently, the equilibrium
spectrum will be addressed.

During the growth and equilibrium stages of the experiment the largest waves are
driven by sloshing of the fluid in the tank. Propagation of the waves inevitably leads
to reflection at the walls. Every time these waves reflect at the sloping wall in a
clockwise (focusing) sense, their wavenumber increases (wavelength decreases) by a
factor

γ =
sin (θ + α)

sin (θ − α)
. (4.1)

For the parameters given in table 1 this yields focusing power γ ≈ 1.6. The amplitude
of the wave is amplified by the same ratio, as conservation laws demand. This results
in a continuous transfer of energy towards the high wavenumbers. This transfer is also
dependent on group speed cg(k) = |cg| =N sin θ/k, which decreases with increasing k.
We define the different loop times, the time needed for the energy in wavenumber k

to travel once around the attractor of length La:

tloop(k) =
La

cg(k)
=

Lak

N sin θ
. (4.2)

We also define a sequence of focused wavenumbers

kn = γ kn−1 = γ nk0, (4.3)

with k0 = 2π/H , the wavenumber corresponding to the scale of the basin, and n the
number of loops around the attractor. Combining (4.2) and (4.3) we define

tsum(kn) =

n−1∑
i=0

tloop(ki) =

n−1∑
i=0

Laγ
ik0

N sin θ
=

Lak0

N sin θ

γ n − 1

γ − 1
. (4.4)

This is the time passed since the wave had wavenumber k0. The increase in
wavenumber and amplitude is not unlimited. Viscosity acts on the waves and becomes
more efficient at dissipating energy at high wavenumbers. This process is the sink
for the energy put into the system. A balance between generation/amplification and
dissipation is reached in the equilibrium stage; this is addressed in the next section.
When we stop the oscillation, and thus the energy input, the transfer of energy
towards high k continues. The source for the lowest wavenumber (k0) however, is now
gone.

This ongoing transfer from low to high wavenumbers is seen in figure 5. Here, we
see that in the decay stage, the energy associated with the high values of k is sustained
much longer at the equilibrium level than is the case at the low wavenumbers. The
dashed white lines in figure 5 represent tsum, with La =850 mm, starting from arbitrary
times. We can see that these lines align with the peak shift in the spectrum in both
the growth and decay stage.
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Figure 5. Evolution of the wavenumber spectrum along section S1 during the whole
experiment. The dashed white lines indicate tsum. The black band (50 � t/T � 52) indicates
the transition from the forced stage to the decay stage.

4.1. Simple model equilibrium spectrum

We now address the observed equilibrium spectrum. A balance is assumed between
amplification of the amplitude through reflection off the slope and dissipation at the
high wavenumbers. Rieutord et al. (2001) considered a travelling wave packet along
an attractor and described its damping by viscosity as

A(k) = A0e
−νk2t . (4.5)

This follows by inserting (3.1) into a diffusion equation ∂bη/∂t = ν∂2bη/∂η2. The
viscous damping is of influence over multiple wave periods, t � T , and we will model
damping between successive reflections from the slope for a given packet discretely.
We do this by sampling (4.5) at each loop around the attractor. At the sloping wall
the wave (kn−1) is focused into a wave with higher wavenumber kn. Upon reflection
the energy flux is preserved, i.e. F = cgU

2/2 is constant, where the particle motion
U scales with the perturbation density (Phillips 1977). However, since A refers to
the amplitude of the perturbation density gradient, then U ∝ A/k implying A2k−3 is
preserved. From this we find the recursive relation A(kn)

2 ≡ A2
n = γ 3A2

n−1. Combining
this description of focusing with that of the dissipation in (4.5) and the time for each
loop, (4.2), then leads to

A2
n = γ 3 exp

[
−2νLak

3
n

N sin θ

]
A2

n−1 = γ 3n exp [−Υ (γ 3n − 1)]A2
0, (4.6)

with Υ = [2ν/(H 2N)][La/H ][(2π)3/((γ 3 − 1) sin θ)]. We calculate subsequent wave
numbers, starting from k0 and using appropriate values for our experiment
(ν = 1 mm2 s−1 and ω = 1.23 rad s−1). We find that in eight focusing reflections the
largest wavelength is transformed into the smallest wavelength found in our observed
spectrum. In figure 6 we plot the observed equilibrium spectrum along S1 (solid
line) and our computed A2

n from (4.6) (squares). The dashed line indicates the
spectrum (4.6) where n is treated as a continuous variable. It is clear that for
the lowest wavenumbers the amplification by focusing is dominant (left side of the
spectrum ∝ γ 3n) and that dissipation mainly acts on the high wavenumbers (right
side of the spectrum ∝ exp [−Υ (γ 3n − 1)]). The observed and modelled spectra have
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Figure 6. Comparison of the observed equilibrium spectrum and A2
n from (4.6).

similar behaviour and indeed show that our assumption of a balance between focusing
and viscous dissipation is reasonable. We argue that the difference between observation
and model on the dissipation side of the spectrum is caused by noise. Note that (4.6)
fixes the structure of the spectrum but not its scale. The amplitude A0 remains
arbitrary and we have matched it to that of our experimental spectrum. While we
do not know the actual A0 for our experiments, we expect that the amplitude of the
forcing will play a dominant role in determining A0 and hence the maximum value
of A(k).

5. Discussion and conclusion
From this work it is clear that the observed structure of internal wave attractors can
be explained through the linear processes of focusing and viscous diffusion. Focusing
takes the energy from the relatively large basin scale, that is most strongly excited
by the forcing, to smaller scales where viscous dissipation dominates, overwhelming
any further focusing. In these experiments the internal waves at the basin scale were
undoubtedly linear. Whilst the wave amplitude increased as the wavelength decreased
during the first few cycles of the attractor, this was not sufficient to generate any
strong nonlinearities.

In their laboratory experiments, Manders & Maas (2004) observed that the attractor
scaled with the tank size. From this they concluded that the scale of the attractor is
independent of viscosity. Paradoxically, in the astrophysical context, Rieutord et al.
(2001) and Ogilvie (2005) found that the scale of the attractor depends on viscosity.
We find that the scale of the attractor is set by the spectral peak at wavenumber
kpeak = γ

npeakk0. Neglecting the discrete nature of n, the value of npeak is obtained when
the derivative of (4.6) with respect to n vanishes, giving npeak = − ln(Υ 1/3)/ ln(γ ).
Recalling that k0 ∝ H −1, assuming that La ∝ H and using the relation pln q/ lnp = q ,
shows that the length scale of the attractor is k−1

peak ∝ (Hν/N)1/3. The value of kpeak

turns out to be strongly dependent on fluid height H when the laboratory range
is considered (200 < H < 1000 mm, Manders & Maas 2004). However, this does not
mean that kpeak is independent of the viscosity in this geometry regime. Even at
astrophysical scales, the balance between geometry, viscosity and stratification will
set the scale of the attractor.
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